MetaTrader 4 - Indicateurs Moyennes mobiles, indicateur MA pour MetaTrader 4 L'indicateur technique de moyenne mobile indique la valeur moyenne du prix de l'instrument pour une certaine période de temps. Quand on calcule la moyenne mobile, on fait la moyenne du prix de l'instrument pour cette période. À mesure que le prix change, sa moyenne mobile augmente ou diminue. Il existe quatre types différents de moyennes mobiles: Simple (également appelé arithmétique), exponentiel, lissé et linéaire pondéré. Les moyennes mobiles peuvent être calculées pour tout ensemble de données séquentiel, y compris les prix d'ouverture et de clôture, les prix les plus élevés et les plus bas, le volume des transactions ou tout autre indicateur. C'est souvent le cas lorsque l'on utilise des moyennes mobiles doubles. La seule chose où les moyennes mobiles de différents types divergent considérablement l'une de l'autre, est quand les coefficients de poids, qui sont affectés aux dernières données, sont différents. Dans le cas où nous parlons de moyenne mobile simple, tous les prix de la période en question, sont de valeur égale. Les moyennes mobiles exponentielles et linéaires pondérées attachent plus de valeur aux derniers prix. La façon la plus courante d'interpréter la moyenne mobile des prix est de comparer sa dynamique à celle du prix. Lorsque le prix de l'instrument s'élève au-dessus de sa moyenne mobile, un signal d'achat apparaît, si le prix tombe en dessous de sa moyenne mobile, ce que nous avons est un signal de vente. Ce système de négociation, basé sur la moyenne mobile, n'est pas conçu pour fournir une entrée sur le marché juste à son point le plus bas, et sa sortie à droite sur le pic. Il permet d'agir selon la tendance suivante: acheter peu après que les prix atteignent le fond, et vendre peu de temps après que les prix aient atteint leur sommet. Moyenne mobile simple (SMA) Simple, en d'autres termes, la moyenne mobile arithmétique est calculée en additionnant les prix de la fermeture de l'instrument sur un certain nombre de périodes simples (par exemple, 12 heures). Cette valeur est ensuite divisée par le nombre de ces périodes. SMA SUM (FERMER, N) N Où: N est le nombre de périodes de calcul. Moyenne mobile exponentielle (EMA) La moyenne mobile exponentiellement lissée est calculée en ajoutant la moyenne mobile d'une certaine part du cours de clôture actuel à la valeur précédente. Avec des moyennes mobiles exponentiellement lissées, les derniers prix sont plus intéressants. La moyenne mobile exponentielle de P-pourcentage ressemblera à: Où: CLOSE (i) le prix de la période courante fermeture EMA (i-1) Moyenne mobile exponentielle de la période précédente fermeture P le pourcentage d'utilisation de la valeur du prix. Moyenne mobile lissée (SMMA) La première valeur de cette moyenne mobile lissée est calculée comme étant la moyenne mobile simple (SMA): SUM1 SUM (FERMER, N) La deuxième et les moyennes mobiles suivantes sont calculées selon cette formule: Où: SUM1 est le Somme des prix de clôture pour N périodes SMMA1 est la moyenne mobile lissée de la première barre SMMA (i) est la moyenne mobile lissée de la barre courante (sauf pour la première) CLOSE (i) est le prix de clôture actuel N est le Période de lissage. Moyenne mobile pondérée linéaire (LWMA) Dans le cas de la moyenne mobile pondérée, les données les plus récentes sont plus utiles que les données plus anciennes. La moyenne mobile pondérée est calculée en multipliant chacun des cours de clôture dans la série considérée, par un certain coefficient de pondération. SOMME (i, N) SOMME (i, N) Où: SOMME (i, N) est la somme totale des coefficients de pondération. Les moyennes mobiles peuvent également être appliquées aux indicateurs. C'est là que l'interprétation des moyennes mobiles des indicateurs est semblable à l'interprétation des moyennes mobiles de prix: si l'indicateur dépasse sa moyenne mobile, cela signifie que le mouvement ascendant des indicateurs devrait continuer: si l'indicateur tombe en dessous de sa moyenne mobile, Signifie qu'il est susceptible de continuer à aller vers le bas. Voici les types de moyennes mobiles sur le graphique: Moyenne mobile simple (SMA) Moyenne mobile exponentielle (EMA) Moyenne mobile lissée (SMMA) Moyenne mobile pondérée linéaire (LWMA) Moyenne mobile exponentielle - EMA BREAKING DOWN Moyenne mobile exponentielle - EMA Les 12 - et les EMA de 26 jours sont les moyennes à court terme les plus populaires, et elles sont utilisées pour créer des indicateurs comme la divergence de convergence moyenne mobile (MACD) et l'oscillateur de prix en pourcentage (PPO). En général, les EMA de 50 et de 200 jours sont utilisés comme signaux d'évolution à long terme. Les commerçants qui utilisent l'analyse technique trouvent des moyennes mobiles très utiles et perspicaces lorsqu'elles sont appliquées correctement, mais créent des ravages lorsqu'elles sont mal utilisées ou mal interprétées. Toutes les moyennes mobiles couramment utilisées dans l'analyse technique sont, par leur nature même, des indicateurs en retard. Par conséquent, les conclusions tirées de l'application d'une moyenne mobile à un graphique de marché particulier devraient être de confirmer un mouvement de marché ou d'indiquer sa force. Très souvent, au moment où une ligne d'indicateurs de la moyenne mobile a fait un changement pour refléter une évolution significative du marché, le point optimal d'entrée sur le marché a déjà dépassé. Un EMA sert à atténuer ce dilemme dans une certaine mesure. Parce que le calcul EMA place plus de poids sur les dernières données, il étreint l'action de prix un peu plus serré et réagit donc plus rapidement. Ceci est souhaitable lorsqu'un EMA est utilisé pour dériver un signal d'entrée de négociation. Interprétation de l'EMA Comme tous les indicateurs de la moyenne mobile, ils sont beaucoup mieux adaptés aux marchés tendances. Lorsque le marché est dans une tendance forte et soutenue à la hausse. La ligne indicatrice EMA affichera également une tendance haussière et vice-versa pour une tendance à la baisse. Un commerçant vigilant ne sera pas seulement attention à la direction de la ligne EMA, mais aussi la relation du taux de changement d'une barre à l'autre. Par exemple, lorsque l'action de prix d'une forte tendance haussière commence à s'écraser et à inverser, le taux de changement de l'EMA d'une barre à l'autre commencera à diminuer jusqu'à ce que la ligne d'indicateur s'atténue et que la vitesse de changement soit nulle. En raison de l'effet retardé, par ce point, ou même quelques bars avant, l'action de prix aurait déjà inversé. Il s'ensuit donc que l'observation d'une diminution constante du taux de variation de l'EMA pourrait elle-même être utilisée comme un indicateur qui pourrait mieux contrer le dilemme causé par l'effet retardé des moyennes mobiles. Utilisations courantes de l'EMA Les EMA sont couramment utilisés en conjonction avec d'autres indicateurs pour confirmer les mouvements significatifs du marché et pour évaluer leur validité. Pour les commerçants qui négocient des marchés intraday et rapide, l'EMA est plus applicable. Très souvent, les commerçants utilisent les EMA pour déterminer un biais de négociation. Par exemple, si une EMA sur un graphique quotidien montre une forte tendance à la hausse, une stratégie de traders intraday peut être de négocier uniquement du côté long sur un graphique intraday. Explorer la moyenne exponentiellement pondérée Volatilité moyenne est la mesure la plus commune de risque, Il est disponible en plusieurs saveurs. Dans un article précédent, nous avons montré comment calculer la volatilité historique simple. Nous avons utilisé les données réelles sur les actions de Googles afin de calculer la volatilité quotidienne basée sur 30 jours de données sur les actions. Dans cet article, nous améliorerons la volatilité simple et discuterons de la moyenne mobile exponentiellement pondérée (EWMA). Historique vs. Volatilité implicite Tout d'abord, mettons cette métrique dans un peu de perspective. Il existe deux grandes approches: la volatilité historique et implicite (ou implicite). L'approche historique suppose que le passé est prologue, nous mesurons l'histoire dans l'espoir qu'elle est prédictive. La volatilité implicite, d'autre part, ignore l'histoire qu'elle résout pour la volatilité impliquée par les prix du marché. Elle espère que le marché le sait mieux et que le prix du marché contient, même implicitement, une estimation de la volatilité. Si l'on se concentre uniquement sur les trois approches historiques (à gauche ci-dessus), elles ont deux étapes en commun: Calculer la série de retours périodiques Appliquer un schéma de pondération D'abord, nous Calculer le rendement périodique. C'est généralement une série de rendements quotidiens où chaque retour est exprimé en termes continuellement composés. Pour chaque jour, nous prenons le log naturel du ratio des prix des actions (c'est-à-dire le prix aujourd'hui divisé par le prix d'hier, et ainsi de suite). Cela produit une série de rendements quotidiens, de u i à u i-m. Selon le nombre de jours (m jours) que nous mesurons. Cela nous amène à la deuxième étape: c'est là que les trois approches diffèrent. Dans l'article précédent (Utilisation de la volatilité pour mesurer le risque futur), nous avons montré que, sous quelques simplifications acceptables, la variance simple est la moyenne des rendements au carré: Notez que cela résume chacun des rendements périodiques, puis divise ce total par Nombre de jours ou observations (m). Donc, c'est vraiment juste une moyenne des rendements périodiques au carré. Autrement dit, chaque retour au carré reçoit un poids égal. Ainsi, si l'alpha (a) est un facteur de pondération (spécifiquement, un 1m), alors une variance simple ressemble à ceci: L'EWMA améliore la variance simple La faiblesse de cette approche est que tous les rendements gagnent le même poids. Le retour hier (très récent) n'a plus d'influence sur la variance que le rendement des derniers mois. Ce problème est résolu en utilisant la moyenne mobile exponentiellement pondérée (EWMA), dans laquelle les rendements plus récents ont un poids plus important sur la variance. La moyenne mobile exponentiellement pondérée (EWMA) introduit lambda. Qui est appelé le paramètre de lissage. Lambda doit être inférieur à un. Sous cette condition, au lieu de pondérations égales, chaque rendement au carré est pondéré par un multiplicateur comme suit: Par exemple, RiskMetrics TM, une société de gestion des risques financiers, a tendance à utiliser un lambda de 0,94 ou 94. Dans ce cas, le premier La plus récente) le rendement périodique au carré est pondéré par (1-0.94) (. 94) 0 6. Le prochain rendement au carré est simplement un multiple lambda du poids antérieur dans ce cas 6 multiplié par 94 5.64. Et le troisième jour antérieur, le poids est égal à (1-0,94) (0,94) 2 5,30. C'est le sens de l'exponentielle dans EWMA: chaque poids est un multiplicateur constant (c'est-à-dire lambda, qui doit être inférieur à un) du poids des jours précédents. Cela garantit une variance pondérée ou biaisée vers des données plus récentes. (Pour en savoir plus, consultez la feuille de calcul Excel pour la volatilité de Googles.) La différence entre la volatilité et l'EWMA pour Google est illustrée ci-dessous. La volatilité simple pèse efficacement chaque rendement périodique de 0.196 comme indiqué dans la colonne O (nous avions deux années de données quotidiennes sur les cours des actions, soit 509 déclarations quotidiennes et 1509 0.196). Mais notez que la colonne P attribue un poids de 6, puis 5.64, puis 5.3 et ainsi de suite. C'est la seule différence entre la variance simple et EWMA. Rappelez-vous: Après avoir additionné toute la série (dans la colonne Q), nous avons la variance, qui est le carré de l'écart-type. Si nous voulons la volatilité, nous devons nous rappeler de prendre la racine carrée de cette variance. Quelle est la différence entre la volatilité quotidienne entre la variance et l'EWMA dans l'affaire Googles? Sa significative: La variance simple nous a donné une volatilité quotidienne de 2,4 mais l'EWMA a donné une volatilité quotidienne de seulement 1,4 (voir la feuille de calcul pour plus de détails). Apparemment, la volatilité de Googles s'est installée plus récemment donc, une simple variance pourrait être artificiellement élevée. La variation d'aujourd'hui est une fonction de la variation des jours Pior Vous remarquerez que nous devions calculer une longue série de poids exponentiellement en déclin. Nous ne ferons pas les calculs ici, mais l'une des meilleures caractéristiques de l'EWMA est que la série entière se réduit commodément à une formule récursive: Recursive signifie que les références de variance d'aujourd'hui (c'est-à-dire une fonction de la variance des jours précédents). La variance d'aujourd'hui (sous EWMA) équivaut à la variance d'hier (pondérée par lambda) plus le rendement au carré d'hier (pesé par un lambda négatif). Remarquez comment nous ajoutons simplement deux termes ensemble: la variance pondérée d'hier et la pondération pondérée hier, au carré. Même si, lambda est notre paramètre de lissage. Un lambda plus élevé (par exemple, comme RiskMetrics 94) indique une diminution plus lente dans la série - en termes relatifs, nous allons avoir plus de points de données dans la série et ils vont tomber plus lentement. En revanche, si l'on réduit le lambda, on indique une décroissance plus élevée: les poids diminuent plus rapidement et, en résultat direct de la décroissance rapide, on utilise moins de points de données. (Dans la feuille de calcul, lambda est une entrée, donc vous pouvez expérimenter avec sa sensibilité). Résumé La volatilité est l'écart-type instantané d'un stock et la métrique de risque la plus courante. C'est aussi la racine carrée de la variance. Nous pouvons mesurer la variance historiquement ou implicitement (volatilité implicite). Lors de la mesure historique, la méthode la plus simple est la variance simple. Mais la faiblesse avec la variance simple est tous les retours obtenir le même poids. Nous sommes donc confrontés à un compromis classique: nous voulons toujours plus de données, mais plus nous avons de données, plus notre calcul est dilué par des données distantes (moins pertinentes). La moyenne mobile pondérée exponentiellement (EWMA) améliore la variance simple en attribuant des pondérations aux rendements périodiques. En faisant cela, nous pouvons utiliser une grande taille d'échantillon mais aussi donner plus de poids à des retours plus récents. (Pour voir un tutoriel sur ce sujet, visitez la Tortue Bionique.)
No comments:
Post a Comment